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COVID-19 pandemic has caused severe disruption of global health and devastated the socio-economic
conditions all over the world. The disease is caused by SARS-CoV-2 virus that belongs to the family of
Coronaviruses which are known to cause a wide spectrum of diseases both in humans and animals. One
of the characteristic features of the SARS-CoV-2 virus is the high reproductive rate (Rg) that results in
high transmissibility of the virus among humans. Vaccines are the best option to prevent and control this

Keywords: disease. Though, the traditional intramuscular (IM) route of vaccine administration is one of the effective
SARS-COV-2 N . . .. L. .

. o methods for induction of antibody response, a needle-free self-administrative intradermal (ID) immu-
Intradermal immunization . . . . . . . . o s . .
Vaccine nization will be easier for SARS-CoV-2 infection containment, as vaccine administration method will

limit human contacts. Here, we have assessed the humoral and cellular responses of a RBD-based peptide
immunogen when administered intradermally in BALB/c mice and side-by-side compared with the
intramuscular immunization route. The results demonstrate that ID vaccination is well tolerated and
triggered a significant magnitude of humoral antibody responses as similar to IM vaccination. Addi-
tionally, the ID immunization resulted in higher production of IFN-y and IL-2 suggesting superior cellular
response as compared to IM route. Overall, our data indicates immunization through ID route provides a
promising alternative approach for the development of self-administrative SARS-CoV-2 vaccine
candidates.

RBD peptide
Humoral and cellular responses
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SARS-CoV-2 virus infection in humans has resulted in the socio-economic condition [2]. The SARS-CoV-2 infection can range

COVID-19 pandemic which affected more than 87 million people all
over the world and approximately 3.1 million deaths till March
2021 [1]. Since the early occurrence on December 31, 2019, in
Wuhan provinces, China, the virus has now been spread over 220
countries, and has a massive impact on healthcare, livelihood, and

Abbreviations: RBD, Receptor binding protein; ID, Intradermal; IM, Intramus-
cular; hACE2, human-angiotensin-converting enzyme 2; COVID-19, Coronavirus
disease 2019; SARS-CoV-2, Severe acute respiratory syndrome-related Coronavirus
2; MERS-CoV, Middle East respiratory syndrome Coronavirus; SARS-CoV, Severe
acute respiratory syndrome-related Coronavirus; S protein, Spike protein; TMB,
3,3',5,5'-Tetramethylbenzidine; ELISA, Enzyme-Linked Immunosorbent Assay.
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from asymptomatic, mild to severe form based on the clinical signs
and symptoms [3]. The most vulnerable and high-risk population is
the old people (above 60 years), and people’ with underlying health
conditions [4]. In clinical cases, intensive-care requirement for
SARS-CoV-2 infection is for the patients who can develop acute
respiratory distress syndrome (ARDS), thus leading to severe res-
piratory distress and requirement of invasive mechanical ventila-
tion and is one of the main reasons of COVID-19 associated deaths
[5].

SARS-CoV-2 is an enveloped, RNA virus that belongs to the
family Coronaviridae and placed in the genus beta Coronaviruses
which also include known Coronaviruses of humans and animals
such as SARS-CoV, Middle East respiratory syndrome Coronavirus
(MERS-CoV), HCoV-0C43, HCoV-HKU1 and bat Coronaviruses [6,7].
Even though, the SARS-CoV-2 has a genetic similarity with the
other Coronaviruses, there is a striking difference between the

1286-4579/© 2021 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
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virus—host interaction, the disease pathobiology, and trans-
missibility. The SARS-CoV-2 virus infection exhibits a higher or
similar basic reproductive number (Rg) as compared to SARS-CoV
[8—10] MERS, or influenza that results in higher transmissibility
and spread of the virus [11,12]. One of the fundamental complica-
tions of SARS-CoV-2 is that it is a RNA virus, hence it is highly
susceptible to rapid mutation and evolution of new variants. A new
variant of SARS-CoV-2, Variant VOC 202012/01, has already
emerged in UK showing a more rapid transmission rate among
humans than that of the parent strain [13]. Vaccination has been
initiated with approved vaccine candidates from Oxford-AstraZe-
neca's covid-19 vaccine, Pfizer and BioNTech mRNA, and Moderna
mRNA vaccine globally, while about 321 other vaccine candidates
are in various stages of development [8,14]. However, it will be
highly beneficial to be prepared for next-generation vaccine
development that can prevent virus escape and will require less
human contact and resources. The above-mentioned vaccine can-
didates have adopted the intramuscular route which is a common
route for injectable vaccines.

ID administration of the vaccine has the advantage of the usage
of less volume of antigen and could present the antigen directly to
antigen-presenting cells like dendritic cells for further processing
and presentation and thus can trigger both the B cell and T cell arm
for protection [15,16]. The route of administration of vaccines plays
an important role in reaching out to mass population. In the present
study, we have evaluated the immunogenicity of SARS-CoV-2 RBD
peptide-based immunogen through ID route and further compared
it with IM route of administration. Our results revealed ID route
induced strong humoral response in the prime-boost approach and
the antibody response is skewed towards IgG1 as compared to the
IM route. Both the immunization routes also showed neutralization
against the SARS-CoV-2 pseudotyped and wild type viruses.
Furthermore, immunized mice through ID route showed significant
T cell response in draining lymph nodes. Altogether, we have shown
as a proof of concept, the ID route could also work as an ideal route
of vaccine delivery and there is a scope of developing a self
immunizable needle-free vaccine candidate against SARS-CoV-2
virus.

1. Material and methods
1.1. Animal immunization

The sequence of SARS-CoV-2 used for designing the peptides
was based on the amino acid sequence of SARS-CoV-2 isolate
Wuhan-Hu-1, GenBank: MN908947.3. A 20-mer peptide was
selected from the receptor binding motif (RBM) region of RBD as
peptide immunogen. In our recent study, we have shown that this
20-mer RBD peptide immunogen in combination with Freund's’
adjuvant could induce potent antibody responses in BALB/c mice
when immunized intra muscularly [17]. It was shown that the
binding to this region is known to directly interfere with the
binding of RBD with hACE2 [18]. The peptide was dissolved in
phosphate-buffered saline (PBS) at pH 7.4 to a final concentration of
1—4 mg/ml. All animal studies were conducted in compliance with
CPCSEA and were approved by the THSTI's Institutional Animal
Ethics Committee (IAEC) having approval number IAEC/THSTI/104.
20 inbred adult male or female BALB/c mice of 6—8 weeks old were
randomly allocated into four groups of five animals each (n = 5).
BALB/c mice were administered with 40 pg of RBD peptide pre-
pared in 1:1 with Addavax™ (adjuvant) via both intradermal route
(n = 5), intramuscular route (n = 5), and their respective sham
controls (n = 5). Blood collected from mice at indicated time points
were incubated at 37 °C for 4 h and centrifuged to harvest the
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serum. The serum samples were heat inactivated at 56 °C for 1 h
and stored at —20 °C for future use.

1.2. ELISA (Enzyme-linked immunosorbent assay)

Serum humoral antibodies generated against RBD peptide and
spike protein were assessed by ELISA as described previously [19].

1.3. Lymph node and spleen single cell preparation

Single cell suspension of lymph nodes and spleen were prepared
by mincing with frosted slides. Minced cells were pelleted by
centrifuging at 1200 rpm for 5 min. Lymph node cells were resus-
pended in fresh complete media and processed further for exper-
iment. Spleen cells were washed once with 1X PBS, and then lysed
with 2.0 ml of RBC lysis buffer for 3 min at room temperature. After
RBC lysis, spleen samples were washed twice with complete media
and finally resuspended in complete media for further experiment.

14. Antigen stimulation and multicolor fluorescence staining

Briefly, the cells were stimulated with antigen (10 pg/ml) for 5 h
at 37 °C in presence of brefeldin A. After incubation, cells were
processed for cell surface and intracellular staining. Cells were fixed
with 1% PFA and acquired in flow-cytometer. Detailed methodology
is provided in supplementary information.

1.5. Virus neutralization

Pseudovirus based neutralization and the classical plaque-based
neutralization assay using SARS-Related Coronavirus 2, Isolate
USA—WAT1/2020 virus was performed as per the standard protocol
detailed in the supplementary information.

1.6. Cell—cell fusion assay

Cell—cell fusion assay was conducted as described before [20]
with slight modification provided in supplementary information.

1.7. Statistical analysis

Statistical analyses were performed using the analysis software
within the GraphPad Prism package 8. Two-way ANOVA test was
used in ELISA. T cell data were presented as the means + standard
errors of the mean (SEM). The T cell assays were analyzed using one
-way Anova, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
considered significant.

2. Results
2.1. Structural analysis of RBM peptide

The spike protein present on the SARS-CoV-2 virus surface is the
major target of protective neutralizing antibodies and are present
in the convalescent patient samples in response to SARS-CoV-2
infection. Neutralizing antibodies are elicited against different do-
mains of the spike protein and particularly to the RBD [21,22]. Here,
we have selected immunogenic peptide of 20 amino acids length
that is a part of the RBM of RBD, the sequence of amino acids is
shown in Fig. 1A. The neutralizing antibodies are known to bind to
the RBM region both in SARS-CoV and SARS-CoV-2 [23]. Potent
neutralizing antibodies such as S2E12 and S2H13 isolated from
patient samples neutralize SARS-CoV-2 by targeting the RBM re-
gion of RBD [23,24].
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Fig. 1. Interaction of SARS-CoV-2 virus Spike-RBD protein with host ACE 2 protein and immunization of BALB/c mice. A. 3D modeled picture depicting the interaction of RBD
(red, yellow and blue) domains of spike protein from SARS-CoV-2 virus with host ACE2 (green) protein. The RBM region is shown in yellow and the peptide region is shown in red.
Rest of the RBD is shown in blue. The inset image showing the interacting face of ACE2 (green) with the selected peptide immunogen (red). B. BALB/C mice were primed and boosted
at a gap of 3 weeks by intradermal and intramuscular routes. Blood was collected from mice by retro-orbital bleeding at indicated time points.

2.2. Immunization via both ID and IM route induces robust RBD
protein specific humoral responses

Mice immunized with RBD peptide adjuvanted with Adda-
vax™ in prime-boost regimen resulted in the elicitation of RBD-
specific antibodies as measured by IgG ELISA. After 14 days of
priming, mice immunized through ID route showed endpoint
ELISA titer in between 1475 and 7250 dilutions to whole IgG,
whereas sera from IM route immunized mice showed endpoint
ELISA titer in between 1600 and 3625 dilutions (Fig. 2A and B). A
single boost with RBD peptide immunogen at 28th day has
resulted in a significant increase in humoral IgG response to RBD-
whole soluble protein both in ID and IM route immunized group
(Fig. 2A and B) (P < 0.0001, Two-way ANOVA). The whole IgG
response was higher in IM group than ID group, which might be
due to the injection site. In IM route, the antigen was injected
directly to muscles which have high vascularity, that might have
allowed fast mobilization of antigen to antigen presenting cells.
We further profiled the type of IgG immune responses that have
been generated in both ID and IM immunized routes and their
comparative evaluation shows comparable humoral immune re-
sponses (Fig. 2D). As shown in Fig. 2C, IgG1 account for nearly half
of the whole IgG responses in ID group, while in case of IM group
induction of IgG1 in whole IgG was less as compared to ID group.
Rest of the IgG responses in both the groups were other IgG iso-
types directed (data not shown). Earlier we have shown that in
case of IM group, IgG2 responses also makes significant portion in
whole IgG [17]. It might be possible that IgG2 responses would be

higher in IM group than the ID, and comparatively more Th2 po-
larization in case of IM immunization, which could also be re-
flected by the lower frequency of IFN-y producing cells in IM
group. In SARS-CoV-2 infection in humans, the lower respiratory
tract is mainly protected by IgG1 antibodies [25]. The elicitation of
IgG1 responses by either immunized routes, suggests ID route for
immunization is an effective route to induce antigen-specific
humoral responses.

2.3. The immunized serum binds to pre-fusion soluble spike protein
and inhibits ACE2 mediated cell—cell fusion

Next, we determined the reactivity of the immunized sera to
SARS-CoV-2 spike soluble protein. The sera from immunized mouse
of each group were analyzed in ELISA against soluble prefusion
spike protein. In the ID immunized group, the highest endpoint
dilution reactivity to the soluble spike protein was found to be at
~30525 dilution and, in the IM immunized group the highest
endpoint dilution was at ~51200 dilution (Fig. 3A). We further
tested the ability of the sera to recognize the RBD and spike soluble
protein through Western blot. The pooled sera after boosting from
ID immunization was used as primary antibody in Western blot
against soluble RBD and spike protein separated by 12% SDS-PAGE.
Bands were recognized by mouse sera approximately at ~29 kDa to
soluble RBD protein and at ~180 kDa to soluble spike protein
(Fig. 3B) [22,25,26].

SARS-CoV-2 RBD protein interacts with hACE2 and thus facil-
itates virus entry into the host cell [27]. One of the characteristic
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Fig. 2. Humoral responses generated with RBD peptide via intradermal and intramuscular route of immunization. A. Binding of serum IgG antibody titers of RBD via ID
immunization route. B. Binding of serum IgG antibody titers of RBD via IM immunization route. C. Comparison of serum IgG1 and D. IgG antibody response generated after im-
munization with RBD peptide via ID and IM route of immunization. The plates were coated with RBD protein at concentration of 2 pg/ml. Values plotted are the mean endpoint
titers in duplicate generated in five mice per group. Each bar represents single mean value of three repeated experiments. Statistical significance was determined using the one-way

ANOVA test (p < 0.05).

features of the SARS-CoV-2 infected cells is to attach with the
adjacent cells expressing receptors and thus forming syncytia. We
established a cell-to-cell fusion assay which is a convenient
method to measure the ability of sera to inhibit cell-to-cell fusion.
As shown in Fig. 3C, in presence of control sera, the cell-to-cell
fusion between 293T expressing full length spike protein and
293T stable expressing hACE2 is not inhibited, however in pres-
ence of immunized pooled sera from ID and IM group at 1: 100
dilution there is more than ~46.5 to 44.5% inhibition in cell-to-cell
fusion was seen.

2.4. Route of administration influences induction of cellular
immune responses

After 30 days post boosting, mice from both the ID and IM
groups were dissected for spleen and draining lymph nodes. CD4 ™"
and CD8* T cell responses were measured in terms of IFN-y and IL-2
cytokine production. The harvested cells from lymphoid organs
were stimulated in vitro with the RBD peptide to measure the an-
tigen specific cytokine responses in CD4" and CD8' T cells by
intracellular staining (Fig. 4A and B).

In draining lymph nodes of ID immunized mice, CD4+ T cells
producing IFN-y were present in significantly higher frequency
compared to that of IM, while the frequencies of IL-2 and IFN-
v + IL-2 producing cells were similar in both the routes (Fig. 4B.i).
When we stimulated the cells in vitro, the frequency of the cytokine
producing cells increased and was significantly higher in ID
compared to that of IM group (Fig. 4B ii). In CD8" T cell population,
at the resting stage the proportion of IL-2 and IFN-y+IL-2 pro-
ducing cells were significantly higher in ID group (Fig. 4C i), and
upon in vitro antigen stimulation they have also maintained

significantly higher frequency as compared to that of IM group
(Fig. 4C ii).

Interestingly, in spleen we could not see any significant differ-
ence in the frequency of the cytokine producing CD4" (Fig. 4D) and
CD8* (Fig. 4E) T cells among both the routes either at the resting
stage (Fig. 4D and E) or upon in vitro antigen stimulation (Fig. 4D
and E), except in ID group mice which showed significantly higher
frequency of IFN-y producing CD4" T cells than that of IM (Fig. 4D
ii). However, here also, in both the routes we could see the increase
in the frequency of cytokine-producing CD4" and CD8™" T cells upon
antigen stimulation (Fig. 4D ii & E. ii).

2.5. Serum antibodies neutralizes both spike pseudotyped virus and
wild type virus

To test the immunized mice serum antibodies neutralizing
ability, we performed S-glycoprotein pseudotyped in HIV plasmid
backbone neutralization-based assay as described in material and
methods section. The readout was percentage inhibition of relative
luciferase units of S-glycoprotein pseudotyped viruses in presence
of serum antibodies from pooled samples. As shown in Fig. 5A, the
immunized pooled sera after the boost from both ID and IM have
shown considerable neutralizing antibody titers, and in both ID and
IM pooled sera at 1:320 dilution, more than 50% inhibition of
pseudotyped viruses.

We further evaluated the neutralizing antibody responses of
serum antibodies with wild type SARS-Related Coronavirus 2,
Isolate USA—WA1/2020 virus by using plaque-based neutralization
assay. In corroboration with pseudovirus-based neutralization
assay, pooled sera from both ID and IM immunized mice after one
boosting showed 50% inhibition in plaque formation as compared
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Fig. 3. Functional characterization of RBD immunized serum. A. Binding of serum IgG antibody to soluble spike protein after boost with RBD peptide via ID and IM route. B.
Western blot analysis of RBD immunized serum reactivity to soluble spike and RBD protein separated on SDS-PAGE (4—12%) gels. The pooled sera from five mice immunized with
RBD-pep (ID) group used as primary antibody in 1:500 dilution to detect soluble RBD protein (left panel) and soluble spike protein (right panel). C. Cell-to-cell fusion between 293T
expressing full length spike protein and 293T stable expressing hACE2 is not inhibited in control sera, and in presence of immunized pooled sera from ID and IM group at 1: 100

dilution more than ~50% inhibition is observed in cell-to-cell fusion activity.

to wild type SARS-CoV-2 virus up to 1:160 dilutions (Fig. 5B) in Vero
E6 cell. Both the assays suggest, the peptide immunization in both
the routes was able to induce neutralizing antibody responses that
can inhibit virus entry into host cells.

3. Discussion and conclusion

The ultimate goal of vaccination is to generate a robust and long-
lasting protective immune response against a pathogen. Vaccine
administration route which is less invasive and easily deliverable
would have greater public accessibility. IM route dominates the
existing vaccine delivery methods despite being more invasive in
nature and requires much more care during administration.
Although other routes of vaccine delivery were also shown to be
either equally or more efficacious compared to that of IM route. ID
is a promising route for vaccine delivery, particularly in the form of
microneedle or microarray patches (MAP). Exploration of different
routes of vaccine administration suggests that not only adjuvant
but also the route of administration of identical antigens influences
immune responses [28,29]. ID administration of influenza vaccine
emerges as a promising alternative to conventional IM route [30].
So, far BCG and rabies are the only vaccines that is administered
through the ID route. Also, ID route has several advantages over the
IM route for being less invasive in nature, have a potential of greater
public reach due to the feasibility of self-delivery, could be inject-
able at any site in the body, and more acceptable vaccination route
for children and infants [ 16]. More interestingly, it could deliver in a
targeted manner vaccine closer to the desired draining lymph node
site to bring the maximum effect. Therefore, in this study we

explored the efficacy of ID route in the generation of antigen spe-
cific immune responses as compared with IM route of immuniza-
tion for a 20 mer RBD peptide of SARS-CoV-2 virus glycoprotein.
Two doses of immunization using the only 20-mer RBD peptide
along with the Addavax™ adjuvant resulted in the production of
substantial humoral antibody responses against the soluble RBD,
both by ID and IM route (Fig. 2), though there were differences in
the magnitude of antibody responses. The high antibody responses
generated by IM injective might be due to the fact the antigen is
administered to muscle tissue with high vascularity which results
in high mobilization and processing of antigen as compared to the
ID route, in which the antigen is administered into the layer of
subcutaneous fat which might resulted in delayed mobilization and
processing of antigen [31,32]. The differences in antibody responses
in ID vs IM route might be due to the difference in the site of in-
jection which regulates antigen presentation and stimulation of
adaptive immune responses. However,we have seen, through ID
route even after priming there was the induction of antigen specific
immune responses, as ID site is good at antigen presenting cells
(APC), and the population of dendritic cells (DC) in the dermis is
higher as compared to other sites which facilitate capture and local
proliferation of DC and draining to local lymph nodes [33]. In
addition, the antibody responses generated were directed towards
IgG1, this is in corroboration with earlier findings with RBD vacci-
nation with Addavax™ as an adjuvant results in higher induction of
antibody responses [34]. We have also observed that the cellular T
cell responses were quantitatively as well as qualitatively better for
ID immunization. In ID route, the frequency of CD4+ IFN-y+ and
CD8+ IL-2+ cells in the draining lymph nodes were higher, which
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depicts the quantitative difference of foreign antigen primed cells
among the two routes. Moreover, the mean frequency of both IFN-
vy + IL-2 producing CD4+ and CD8+ cells were higher in ID im-
munization, depicting the better-quality cells (Fig. 4). This differ-
ence in the T cell responses by the two routes of immunization
could be attributed to the differential presence and diversity of DC
among the two routes. While the difference among the two routes
for T cell responses were noticeable in draining lymph nodes,
similar responses were not observed for the spleen. The possible
reasons could be the restricted involvement of spleen in the im-
mune responses generated against the locally delivered antigen
and also spleen lacks the afferent lymphatic vessel [35] which
further restricts its involvement. However, increased frequency of
IFN-y producing CD4+ and CD8+ T cells in spleen upon in vitro
cognate antigen stimulation depicted their engagement in the
immune response. Interestingly, in spleen we observed signifi-
cantly higher IFN-y producing CD4+ T response in ID route which
might account for the similar IgG1 responses for the two routes
despite the fact that the whole IgG response was higher for IM after
boost dose. And this observation might be useful for the designing
of an effective vaccine candidate against SARS-CoV2 as it might
have an impact on the outcome of route of vaccination [17]. One of
the important activities of SARS family of viruses is the formation of
receptor-mediated syncytia after the spike protein attaches to
hACE2 receptor, thus activating the fusion process [36,37]. The cell-
to-cell fusion of infected cells facilitates virus spread in between
cells thus might be enhancing the pathogenesis. The sera from both
the immunized group showed to block the viral entry at 1: 100
dilutions. In consistent to the above result, both pseudo virus and
wild type virus-based neutralization assays have also shown to
neutralize the virus during entry process.

In conclusion, in this study we have demonstrated that the ID
immunization route is equivalently immunogenic as compared to
traditional IM route of immunization. By using a short RBD peptide
immunogen with Addavax™ adjuvant and minimal doses, high
humoral and cellular responses can be achieved and the sera also
have shown neutralizing potential. The present results are prom-
ising in the development of self-injectable vaccine patches for
SARS-CoV-2 which require minimal human interventions and
contact and thus will help in limiting the rapid spread of viruses.
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